Add like
Add dislike
Add to saved papers

Identification and characterization of arginine finger-like motifs, and endosome-lysosome basolateral sorting signals within the Coxiella burnetii type IV secreted effector protein CirA.

Coxiella burnetii is an obligate intracellular pathogen that replicates in an endolysosome-like compartment termed the Coxiella-containing vacuole (CCV). Formation of this unique replicative niche requires delivery of bacterial effector proteins into the host cytosol where they mediate crucial interactions with the host. We previously identified an essential Dot/Icm effector, CirA that is required for intracellular replication and CCV formation. Furthermore, CirA was shown to stimulate the GTPase activity of RhoA in vitro. In the current study, we used a bioinformatics-guided approach and identified three arginine finger-like motifs, often found in Rho GTPase-activating proteins (GAPs) and endosome-lysosome basolateral sorting signals associated with vesicle trafficking. When expressed in mammalian cells, mutation of either endosome-lysosome-basolateral sorting signals or the arginine finger-like motifs rescued stress phenotypes and decreased plasma membrane localization of ectopically expressed CirA. We further demonstrate that endosome-lysosome sorting signals are required for co-localization with Rab5 and Rab7. Collectively our data indicate that arginine finger-like motifs and endosome-lysosome-basolateral sorting signals within CirA are essential for interaction with the host cytoskeleton.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app