Add like
Add dislike
Add to saved papers

An Rb family-independent E2F3 transcription factor variant impairs STAT5 signaling and mammary gland remodeling during pregnancy in mice.

E2F transcription factors are regulated by binding to the retinoblastoma (Rb) tumor suppressor family of proteins. Previously, we reported an E2FLQ mutation that disrupts the binding with Rb proteins without affecting the transcriptional activity of E2F. We also showed that mouse embryonic fibroblasts with an E2F3LQ mutation exhibit increased E2F activity and more rapid cell proliferation. In this report, we analyzed E2F3LQ mice to further characterize the in vivo consequences of Rb family-independent E2F3 activity. We found that homozygous E2F3LQ mice were viable and had no obvious developmental defects or tumor growth. Our results also indicated that E2F3LQ cells largely retain normal control of cell proliferation in vivo However, female E2F3LQ mice had partial nursing defects. Examination of the E2F3LQ mammary glands revealed increased caveolin-1 (CAV1) expression, reduced prolactin receptor/Stat5 signaling, and impaired pregnancy-induced cell proliferation and differentiation. Of note, ChIP experiments disclosed that E2F3 binds the CAV1 promoter. Furthermore, E2F3 overexpression induced CAV1 expression, and CRISPR/CAS9-mediated E2F3 knockout reduced CAV1 levels and also increased prolactin receptor-induced Stat5 signaling in mammary epithelial cells. Our results suggest that the Rb family-independent E2F3 LQ variant inhibits pregnancy-induced mammary gland cell proliferation and differentiation by up-regulating CAV1 expression and inhibiting Stat5 signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app