Add like
Add dislike
Add to saved papers

Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder concise title: Composition of goldenberry juice waste.

Food Chemistry 2018 May 16
Goldenberry waste powder, contained 5.87% moisture, 15.89% protein, 13.72% fat, 3.52% ash, 16.74% dietary fiber and 61% carbohydrates. Potassium (560 mg/100 g) was the predominant element followed by sodium (170 mg/100 g) and phosphorus (130 mg/100 g). Amino acid analysis gave high levels of cystine/methionine, histidine and tyrosine/phenylalanine. Goldenberry waste powder had good levels of the techno-functional properties including water absorption index, swelling index, foaming capacity and stability (3.38 g/g, 5.24 ml/g, 4.09 and 72.0%, respectively). Fatty acids profile showed that linoleic acid was the predominant fatty acid followed by oleic, palmitic and stearic acids. Iodine value (109.5 g/100 g of oil), acid value (2.36 mg KOH/g of oil), saponification value (183.8 mg KOH/g of oil), peroxide value (8.2 meq/kg of oil) and refractive index (1.4735) were comparable to those of soybean and sunflower oils. Goldenberry waste oil exhibited absorbance in the UV range at 100-400 nm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app