Add like
Add dislike
Add to saved papers

GABA and glutamate in children with Tourette syndrome: A 1 H MR spectroscopy study at 7T.

Tourette syndrome (TS) is characterized by presence of chronic, fluctuating motor and phonic tics. The underlying neurobiological basis for these movements is hypothesized to involve cortical-striatal-thalamo-cortical (CSTC) pathways. Two major neurotransmitters within these circuits are γ-aminobutyric acid (GABA) and glutamate. Seventy-five participants (32 with TS, 43 controls) ages 5-12 years completed 1 H MRS at 7T. GABA and glutamate were measured in dorsolateral prefrontal cortex (DLPFC), ventromedial prefrontal cortex (VMPFC), premotor cortex (PMC), and striatum, and metabolites quantified using LCModel. Participants also completed neuropsychological assessment emphasizing inhibitory control. Scans were well tolerated by participants. Across ROIs combined, glutamate was significantly higher in the TS group, compared to controls, with no significant group differences in GABA observed. ROI analyses revealed significantly increased PMC glutamate in the TS group. Among children with TS, increased PMC glutamate was associated with improved selective motor inhibition; however, no significant associations were identified between levels of glutamate or GABA and tic severity. The dopaminergic system has long been considered to have a dominant role in TS. Accumulating evidence, however, suggests involvement of other neurotransmitter systems. Data obtained using 1 H MRS at 7T supports alteration of glutamate within habitual behavior-related CSTC pathways of children with TS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app