Add like
Add dislike
Add to saved papers

Synthesis of C 3 -Neoglycosides of digoxigenin and their anticancer activities.

Cardiac glycosides exhibit significant anticancer effects and the glycosyl substitution at C3 position of digoxigenin is pivotal for their biological activity. In order to study the structure-activity relationship (SAR) of cardiac glycosides toward cancers and explore more potent anticancer agents, a series of C3 -O-neoglycosides and C3 -MeON-neoglycosides of digoxigenin were synthesized by the Koenigs-Knorr and neoglycosylation method, respectively. In addition, digoxigenin bisdigitoxoside and monodigitoxoside were prepared from digoxin by sodium periodate (NaIO4 ) oxidation and 6-aminocaproic acid hydrolysis. The SAR analysis revealed that C3 -O-neoglycosides of digoxigenin exhibited stronger cytotoxicity and induction of Nur77 expression of tumor cells than C3 -MeON-neoglycosides. Also, 3β-O-glycosides exhibited stronger anticancer effects than 3α-O-glycosides. Among them, 3β-O-(β-l-fucopyranosyl)-digoxigenin (3i) showed the highest activity on induction of Nur77 expression and translocation from the nucleus to cytoplasm, leading to cancer cell apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app