Add like
Add dislike
Add to saved papers

Colossal Anisotropy of the Dynamic Magnetic Susceptibility in Low-Dimensional Nanocube Assemblies.

ACS Nano 2018 Februrary 28
One of the ultimate goals of nanocrystal self-assembly is to transform nanoscale building blocks into a material that displays enhanced properties relative to the sum of its parts. Herein, we demonstrate that 1D needle-shaped assemblies composed of Fe3-δ O4 nanocubes display a significant augmentation of the magnetic susceptibility and dissipation as compared to 0D and 2D systems. The performance of the nanocube needles is highlighted by a colossal anisotropy factor defined as the ratio of the parallel to the perpendicular magnetization components. We show that the origin of this effect cannot be ascribed to shape anisotropy in its classical sense; as such, it has no analogy in bulk magnetic materials. The temperature-dependent anisotropy factors of the in- and out-of-phase components of the magnetization have an extremely strong particle size dependence and reach values of 80 and 2500, respectively, for the largest nanocubes in this study. Aided by simulations, we ascribe the anisotropy of the magnetic susceptibility, and its strong particle-size dependence to a synergistic coupling between the dipolar interaction field and a net anisotropy field resulting from a partial texture in the 1D nanocube needles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app