Add like
Add dislike
Add to saved papers

Conflict between heterozygote advantage and hybrid incompatibility in haplodiploids (and sex chromosomes).

Molecular Ecology 2018 January 13
In many diploid species, the sex chromosomes play a special role in mediating reproductive isolation. In haplodiploids, where females are diploid and males haploid, the whole genome behaves similarly to the X/Z chromosomes of diploids. Therefore, haplodiploid systems can serve as a model for the role of sex chromosomes in speciation and hybridization. A previously described population of Finnish Formica wood ants displays genome-wide signs of ploidally and sexually antagonistic selection resulting from hybridization. Here, hybrid females have increased survivorship but hybrid males are inviable. To understand how the unusual hybrid population may be maintained, we developed a mathematical model with hybrid incompatibility, female heterozygote advantage, recombination and assortative mating. The rugged fitness landscape resulting from the co-occurrence of heterozygote advantage and hybrid incompatibility results in a sexual conflict in haplodiploids, which is caused by the ploidy difference. Thus, whereas heterozygote advantage always promotes long-term polymorphism in diploids, we find various outcomes in haplodiploids in which the population stabilizes either in favour of males, females or via maximizing the number of introgressed individuals. We discuss these outcomes with respect to the potential long-term fate of the Finnish wood ant population and provide approximations for the extension of the model to multiple incompatibilities. Moreover, we highlight the general implications of our results for speciation and hybridization in haplodiploids versus diploids and how the described fitness relationships could contribute to the outstanding role of sex chromosomes as hotspots of sexual antagonism and genes involved in speciation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app