Add like
Add dislike
Add to saved papers

Fusing a Planar Group to a π-Bowl: Electronic and Molecular Structure, Aromaticity and Solid-State Packing of Naphthocorannulene and its Anions.

Molecular and electronic structure, reduction electron transfer and coordination abilities of a polycyclic aromatic hydrocarbon (PAH) having a planar naphtho-group fused to the corannulene bowl have been investigated for the first time using a combination of theoretical and experimental tools. A direct comparison of naphtho[2,3-a]corannulene (C28 H14 , 1) with parent corannulene (C20 H10 , 2) revealed the effect of framework topology change on electronic properties and aromaticity of 1. The presence of two reduction steps for 1 was predicted theoretically and confirmed experimentally. Two reversible one-electron reduction processes with the formal reduction potentials at -2.30 and -2.77 V versus Fc+/0 were detected by cyclic voltammetry (CV) measurements, demonstrating accessibility of the corresponding mono- and dianionic states of 1. The products of the singly and doubly reduced napththocorannulene were prepared using chemical reduction with Group 1 metals and isolated as sodium and rubidium salts. Their X-ray diffraction study revealed the formation of "naked" mono- and dianions crystallized as solvent-separated ion products with one or two sodium cations as [Na+ (18-crown-6)(THF)2 ][C28 H14 - ] and [Na+ (18-crown-6)(THF)2 ]2 [C28 H14 2- ] (3⋅THF and 4⋅THF, respectively). The dianion of 1 was also isolated as a contact-ion complex with two rubidium countercations, [{Rb+ (18-crown-6)}2 (C28 H14 2- )] (5⋅THF). The structural consequences of adding one and two electrons to the carbon framework of 1 are compared for 3, 4 and 5. Changes in aromaticity and charge distribution stemming from the stepwise electron acquisition are discussed based on DFT computational study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app