Add like
Add dislike
Add to saved papers

Kinetics of thermal cis-trans isomerization in a phototropic azobenzene-based single-component liquid crystal in its nematic and isotropic phases.

Single-component azobenzene-based phototropic liquid crystals (PtLC) are promising materials that have started to be explored for photonic applications. One of the essential factors determining the applicability of these materials is the rate of the thermally driven cis-trans isomerization. In this paper, the kinetics of the thermal back cis-to-trans reaction in a pure 4-hexyl-4'-methoxyazobenzene (6-AB-O1) compound in its isotropic liquid and nematic phases is studied (the undoped LC). The reaction rate constants, activation energies and thermal activation parameters were determined based on spectroscopic studies. The reaction kinetics is compared to that measured for the compound dissolved in chloroform. The results demonstrate that the thermal back reaction depends on the phase and molecular environment of the cis-isomer. Moreover, the effect of temperature on the absorption spectra of 6-AB-O1 in its isotropic, nematic and crystalline phases is examined. The changes in the compound's absorption spectra in the respective phases have been correlated to the positional order parameter S.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app