Add like
Add dislike
Add to saved papers

Planar polarization-routing optical cross-connects using nematic liquid crystal waveguides.

Optics Express 2018 January 9
This paper presents the device design and performance analysis of a novel design of planar optical cross-connect (OXC) using nematic liquid crystal (NLC) waveguides. It employs N × N switching matrix in cross-bar fabric. In each unit cell, the input light is set in either the transverse electric (TE) mode or the transverse magnetic (TM) mode by electrically reorienting the NLC in the waveguide. The light then enters a passive waveguide and is routed to different paths depending on the polarization state (TE/TM mode). A sample device of 8 × 8 OXC is analyzed for performance estimation, which predicts a maximum on-chip insertion loss of 3 dB, an average cross-talk of -40 dB, ~1 ms switching time, and 2 mm × 2 mm footprint. The proposed OXC is unique in the switching mechanism of polarization-dependent routing and allows non-blocking switching with high compactness and broad bandwidth. It is potential for optical circuit switching in data centers and optical communication networks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app