Add like
Add dislike
Add to saved papers

High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser Bessel-beam-assisted chemical etching.

Optics Letters 2018 January 2
We proposed combining temporally shaped (double-pulse train) laser pulses with spatially shaped (Bessel beam) laser pulses. By using a temporally shaped femtosecond laser Bessel-beam-assisted chemical etching method, the energy deposition efficiency was improved by adjusting the pulse delay to yield a stronger material modification and, thus, a higher etching depth. The etching depth was enhanced by a factor of 13 using the temporally shaped Bessel beam. The mechanism of etching depth enhancement was elucidated by localized transient-free electrons dynamics-induced structural and morphological changes. Micro-Raman spectroscopy was conducted to verify the structural changes inside the material. This method enables high-throughput, high-aspect-ratio microchannel fabrication in fused silica for potential applications in microfluidics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app