Add like
Add dislike
Add to saved papers

Observation of spatial optical diametric drive acceleration in photonic lattices.

Optics Letters 2018 January 2
We experimentally and theoretically demonstrate a spatial diametric drive acceleration of two mutually incoherent optical beams in 1D optical lattices under a self-defocusing nonlinearity. The two beams, exciting the modes at the top/bottom edges of the first Bloch band and hence experiencing normal/anomalous diffraction, can bind together and bend in the same direction during nonlinear propagation, analogous to the interplay between two objects with opposite signs of mass that breaks Newton's third law. Their spatial spectrum changes associated with the acceleration are analyzed for different lattice modulations. We find that the acceleration limit is determined by the beam exciting the top band edge that reaches a saturated momentum change prior to the other pairing beam.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app