Add like
Add dislike
Add to saved papers

One-Step Bioconversion of Fatty Acids into C8-C9 Volatile Aroma Compounds by a Multifunctional Lipoxygenase Cloned from Pyropia haitanensis.

The multifunctional lipoxygenase PhLOX cloned from Pyropia haitanensis was expressed in Escherichia coli with 24.4 mg·L-1 yield. PhLOX could catalyze the one-step bioconversion of C18-C22 fatty acids into C8-C9 volatile organic compounds (VOCs), displaying higher catalytic efficiency for eicosenoic and docosenoic acids than for octadecenoic acids. C20:5 was the most suitable substrate among the tested fatty acids. The C8-C9 VOCs were generated in good yields from fatty acids, e.g., 2E-nonenal from C20:4, and 2E,6Z-nonadienal from C20:5. Hydrolyzed oils were also tested as substrates. The reactions mainly generated 2E,4E-pentadienal, 2E-octenal, and 2E,4E-octadienal from hydrolyzed sunflower seed oil, corn oil, and fish oil, respectively. PhLOX showed good stability after storage at 4 °C for 2 weeks and broad tolerance to pH and temperature. These desirable properties of PhLOX make it a promising novel biocatalyst for the industrial production of volatile aroma compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app