Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanistic Evaluation of Bioorthogonal Decaging with trans-Cyclooctene: The Effect of Fluorine Substituents on Aryl Azide Reactivity and Decaging from the 1,2,3-Triazoline.

Bioconjugate Chemistry 2018 Februrary 22
Bioorthogonal prodrug activation/decaging strategies need to be selective, rapid and release the drug from the masking group upon activation. The rates of the 1,3-dipolar cycloaddition between a trans-cyclooctene (TCO) and a series of fluorine-substituted azido-PABC self-immolative spacers caging two model drugs, and subsequent release from the 1,2,3-triazoline are reported. As the number of fluorine substituents on the PABC linker increases from one to four, the rate of cycloaddition increases by almost one order of magnitude. Using a combination of fluorescence, 1 H/19 F NMR, and computational experiments, we have been able to determine how substituents on the PABC ring can influence the degradation rates and also the product distribution of the 1,2,3-triazoline. We have also been able to determine how these substituents influence the rate of imine hydrolysis and 1,6-self-immolation decaging rates of the generated anilines. The NMR and computational studies demonstrate that fluorine substituents on the aromatic ring lower the transition state energy required for converting the triazoline to the imine or aziridine intermediates via extrusion of diatomic nitrogen, and that in the case of a tetrafluoro substituted aromatic ring, it is the imine hydrolysis and 1,6-self-immolation that is rate-limiting. This knowledge further enhances the understanding of factors which influence the stability of triazolines, and enables potential applications of fluorinated aromatics, in particular, perfluorinated aromatics, in synthetic chemistry and sustained-release drug delivery systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app