Add like
Add dislike
Add to saved papers

Mechanisms of Bacterial Resistance to Antimicrobial Agents.

During the past decades resistance to virtually all antimicrobial agents has been observed in bacteria of animal origin. This chapter describes in detail the mechanisms so far encountered for the various classes of antimicrobial agents. The main mechanisms include enzymatic inactivation by either disintegration or chemical modification of antimicrobial agents, reduced intracellular accumulation by either decreased influx or increased efflux of antimicrobial agents, and modifications at the cellular target sites (i.e., mutational changes, chemical modification, protection, or even replacement of the target sites). Often several mechanisms interact to enhance bacterial resistance to antimicrobial agents. This is a completely revised version of the corresponding chapter in the book Antimicrobial Resistance in Bacteria of Animal Origin published in 2006. New sections have been added for oxazolidinones, polypeptides, mupirocin, ansamycins, fosfomycin, fusidic acid, and streptomycins, and the chapters for the remaining classes of antimicrobial agents have been completely updated to cover the advances in knowledge gained since 2006.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app