Add like
Add dislike
Add to saved papers

Whole cell solid-state NMR study of Chlamydomonas reinhardtii microalgae.

In vivo or whole-cell solid-state NMR is an emerging field which faces tremendous challenges. In most cases, cell biochemistry does not allow the labelling of specific molecules and an in vivo study is thus hindered by the inherent difficulty of identifying, among a formidable number of resonances, those arising from a given molecule. In this work we examined the possibility of studying, by solid-state NMR, the model organism Chlamydomonas reinhardtii fully and non-specifically 13 C labelled. The extension of NMR-based dynamic filtering from one-dimensional to two-dimensional experiments enabled an enhanced selectivity which facilitated the assignment of cell constituents. The number of resonances detected with these robust and broadly applicable experiments appears to be surprisingly sparse. Various constituents, notably galactolipids abundant in organelle membranes, carbohydrates from the cell wall, and starch from storage grains could be unambiguously assigned. Moreover, the dominant crystal form of starch could be determined in situ. This work illustrates the feasibility and caveats of using solid-state NMR to study intact non-specifically 13 C labelled micro-organisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app