Add like
Add dislike
Add to saved papers

Degradation of organics extracted from dewatered sludge by alkaline pretreatment in microbial electrolysis cell.

Waste activated sludge in China are mostly subjected to dewatering process before final disposal without stabilization. This study investigated the feasibility of organics degradation and H2 production from non-stabilized dewatered sludge (DS) by microbial electrolysis cells (MECs). Alkaline pretreatment was used to disintegrate sludge matrix and solubilize organic matters in DS. Then, the treatment performance of DS supernatant in a single-chamber MEC at various applied voltages was investigated. The COD (chemical oxygen demand) removal rate increased with increasing voltage, which ranged from 26.35 to 44.92% at 0.5-0.9 V. The average coulombic efficiency was 75.6%, while the cathodic hydrogen recovery was not satisfied (15.56-20.05%) with H2 production rates of 0.027-0.038 m3 H2 /(m3  day). The reasons could be ascribed to the complexity of the substrate, H2 loss, and the confinement of configuration in scale-up. The organic matter degradation was influenced by the composition of DS. The carbohydrates could be readily used; meanwhile, the major component of the DS supernatant, i.e. proteins, was difficult to be utilized, which resulted from the low biodegradability of the transphilic fractions during the MEC operation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app