Add like
Add dislike
Add to saved papers

Which data should be tracked in forward-dynamic optimisation to best predict muscle forces in a pathological co-contraction case?

Journal of Biomechanics 2018 Februrary 9
The choice of the cost-function for predicting muscle forces during a movement remains a challenge, especially in patients with neuromuscular disorders. Forward dynamics-based optimisations mainly track joint kinematics or torques, combined with a least-excitation criterion. Tracking marker trajectories and/or electromyography (EMG) has rarely been proposed. Our objective was to determine the best tracking objective-function to accurately predict the upper-limb muscle forces. A musculoskeletal model was created and EMG was simulated to obtain a reference movement - a shoulder abduction. A Gaussian noise (mean = 0; standard deviation = 15%) was added to the simulated EMG. Another noise - corresponding to the actual soft tissue artefacts (STA) of experimental shoulder abduction movements - was added to the trajectories of the markers placed on the model. Muscle forces were estimated from these noisy data, using forward dynamics assisted by six non-linear least-squared objective-functions. These functions involved the tracking of marker trajectories, joint angles or torques, with and without EMG-tracking. All six approaches used the same musculoskeletal model and were solved using a direct multiple shooting algorithm. Finally, the predicted joint angles, muscle forces and activations were compared to the reference values, using root-mean-square errors (RMSe) and biases. The force RMSe of the approach tracking both marker trajectories and EMG (18.45 ± 12.60 N) was almost five times lower than the one of the approach tracking only joint angles (82.37 ± 66.26 N) or torques (85.10 ± 116.40 N). Therefore, using EMG as a complementary tracking-data in forward dynamics seems to be promising for the estimation of muscle forces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app