JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

9-Aminoacridine-based agents impair the bovine viral diarrhea virus (BVDV) replication targeting the RNA-dependent RNA polymerase (RdRp).

Bovine viral diarrhea virus (BVDV) infection is still a plague that causes important livestock pandemics. Despite the availability of vaccines against BVDV, and the implementation of massive eradication or control programs, this virus still constitutes a serious agronomic burden. Therefore, the alternative approach to combat Pestivirus infections, based on the development of antiviral agents that specifically inhibit the replication of these viruses, is of preeminent actuality and importance. Capitalizing from a long-standing experience in antiviral drug design and development, in this work we present and characterize a series of small molecules based on the 9-aminoacridine scaffold that exhibit potent anti-BVDV activity coupled with low cytotoxicity. The relevant viral protein target - the RNA-dependent RNA polymerase - the binding mode, and the mechanism of action of these new antivirals have been determined by a combination of in vitro (i.e., enzymatic inhibition, isothermal titration calorimetry and site-directed mutagenesis assays) and computational experiments. The overall results obtained confirm that these acridine-based derivatives are promising compounds in the treatment of BVDV infections and, based on the reported structure-activity relationship, can be selected as a starting point for the design of a new generation of improved, safe and selective anti-BVDV agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app