Add like
Add dislike
Add to saved papers

2'-O-(2-Methoxyethyl) Nucleosides Are Not Phosphorylated or Incorporated Into the Genome of Human Lymphoblastoid TK6 Cells.

Nucleoside analogs with 2'-modified sugar moieties are often used to improve the RNA target affinity and nuclease resistance of therapeutic oligonucleotides in preclinical and clinical development. Despite their enhanced nuclease resistance, oligonucleotides could slowly degrade releasing nucleoside analogs that have the potential to become phosphorylated and incorporated into cellular DNA and RNA. For the first time, the phosphorylation and DNA/RNA incorporation of 2'-O-(2-methoxyethyl) (2'-O-MOE) nucleoside analogs have been investigated. Using liquid chromatography/tandem mass spectrometry, we showed that enzymes in the nucleotide salvage pathway including deoxycytidine kinase (dCK) and thymidine kinase (TK1) displayed poor reactivity toward 2'-O-MOE nucleoside analogs. On the other hand, 2'-fluoro (F) nucleosides, regardless of the nucleobase, were efficiently phosphorylated to their monophosphate forms by dCK and TK1. Consistent with their efficient phosphorylation by dCK and TK1, 2'-F nucleoside analogs were incorporated into cellular DNA and RNA while no incorporation was detected with 2'-O-MOE nucleoside analogs. In conclusion, these data suggest that the inability of dCK and TK1 to create the monophosphates of 2'-O-MOE nucleoside analogs reduces the risk of their incorporation into cellular DNA and RNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app