JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Internal carotid artery stenosis: A novel surgical model for moyamoya syndrome.

Moyamoya is a cerebrovascular disorder characterized by progressive stenosis of the intracranial internal carotid arteries. There are two forms: Disease and Syndrome, with each characterized by the sub-population it affects. Moyamoya syndrome (MMS) is more prominent in adults in their 20's-40's, and is often associated with autoimmune diseases. Currently, there are no surgical models for inducing moyamoya syndrome, so our aim was to develop a new animal model to study this relatively unknown cerebrovascular disease. Here, we demonstrate a new surgical technique termed internal carotid artery stenosis (ICAS), to mimic MMS using micro-coils on the proximal ICA. We tested for Moyamoya-like vasculopathies by fluorescently labelling the mouse cerebrovasculature with Di I for visualization and analysis of vessel diameter at the distal ICA and anastomoses on the cortical surface. Results show a significant narrowing of the distal ICA and anterior cerebral artery (ACA) in the Circle of Willis, as observed in humans. There is also a significant decrease in the number of anastomoses between the middle cerebral artery (MCA) and the ACA in the watershed region of the cortex. While further characterization is needed, this ICAS model can be applied to transgenic mice displaying co-morbidities as observed within the Moyamoya syndrome population, allowing a better understanding of the disease and development of novel treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app