JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, N.I.H., INTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Abnormal RNA splicing and genomic instability after induction of DNMT3A mutations by CRISPR/Cas9 gene editing.

DNA methyltransferase 3A (DNMT3A) mediates de novo DNA methylation. Mutations in DNMT3A are associated with hematological malignancies, most frequently acute myeloid leukemia. DNMT3A mutations are hypothesized to establish a pre-leukemic state, rendering cells vulnerable to secondary oncogenic mutations and malignant transformation. However, the mechanisms by which DNMT3A mutations contribute to leukemogenesis are not well-defined. Here, we successfully created four DNMT3A-mutated K562 cell lines with frameshift mutations resulting in truncated DNMT3A proteins. DNMT3A-mutated cell lines exhibited significantly impaired growth and increased apoptotic activity compared to wild-type (WT) cells. Consistent with previous studies, DNMT3A-mutated cells displayed impaired differentiation capacity. RNA-seq was used to compare transcriptomes of DNMT3A-mutated and WT cells; DNMT3A ablation resulted in downregulation of genes involved in spliceosome function, causing dysfunction of RNA splicing. Unexpectedly, we observed DNMT3A-mutated cells to exhibit marked genomic instability and an impaired DNA damage response compared to WT. CRISPR/Cas9-mediated DNMT3A-mutated K562 cells may be used to model effects of DNMT3A mutations in human cells. Our findings implicate aberrant splicing and induction of genomic instability as potential mechanisms by which DNMT3A mutations might predispose to malignancy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app