Add like
Add dislike
Add to saved papers

Inertial sensing of the motion speed effect on the sit-to-walk activity.

Gait & Posture 2018 March
The STW execution at motion speed faster than normal most possibly enhances the risk for balance loss due to the increase in body segment accelerations. The purpose of the study was to use inertial sensing to examine the effect of motion speed on the STW segmental kinematics and its temporal events. Eighteen young men (20.7 ± 2.0 years) performed STW trials at preferred (PS) and fast (FS) motion speed. Data were collected with Xsens inertial sensors positioned at the trunk, thigh, shank, and foot segments. The maximum segmental values of angular displacement, angular velocity and linear acceleration, the duration of total STW (ttotal), the absolute and relative (% ttotal) phase duration (Flexion, Transition, Extension, Walking) and, the absolute and relative time taken to reach each maximum value were determined. In FS, ttotal and the absolute phase duration (except for Transition), were all significantly shorter (p = 0.000). The relative phase duration was not altered (p > 0.05), except for the Extension shortening (p = 0.001). The maximum angular displacement was altered only for the thigh (decreased, p = 0.038) and shank (increased, p = 0.004). Maximum angular velocities and linear accelerations were all significantly increased (p = 0.000 for all). The absolute time to reach the maximum values shortened in FS (p ≤ 0.05), while, the relative times were not altered (p > 0.05), except for the delayed trunk maximum angular displacement (p = 0.039). Inertial sensing appears to identify the motion speed effect on STW segmental kinematics and their temporal events in healthy young men. The results of the study may contribute improving the preventive or rehabilitation interventions in persons with impaired postural control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app