JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Microbial community of a gasworks aquifer and identification of nitrate-reducing Azoarcus and Georgfuchsia as key players in BTEX degradation.

Water Research 2018 April 2
We analyzed a coal tar polluted aquifer of a former gasworks site in Thuringia (Germany) for the presence and function of aromatic compound-degrading bacteria (ACDB) by 16S rRNA Illumina sequencing, bamA clone library sequencing and cultivation attempts. The relative abundance of ACDB was highest close to the source of contamination. Up to 44% of total 16S rRNA sequences were affiliated to ACDB including genera such as Azoarcus, Georgfuchsia, Rhodoferax, Sulfuritalea (all Betaproteobacteria) and Pelotomaculum (Firmicutes). Sequencing of bamA, a functional gene marker for the anaerobic benzoyl-CoA pathway, allowed further insights into electron-accepting processes in the aquifer: bamA sequences of mainly nitrate-reducing Betaproteobacteria were abundant in all groundwater samples, whereas an additional sulfate-reducing and/or fermenting microbial community (Deltaproteobacteria, Firmicutes) was restricted to a highly contaminated, sulfate-depleted groundwater sampling well. By conducting growth experiments with groundwater as inoculum and nitrate as electron acceptor, organisms related to Azoarcus spp. were identified as key players in the degradation of toluene and ethylbenzene. An organism highly related to Georgfuchsia toluolica G5G6 was enriched with p-xylene, a particularly recalcitrant compound. The anaerobic degradation of p-xylene requires a metabolic trait that was not described for members of the genus Georgfuchsia before. In line with this, we were able to identify a putative 4-methylbenzoyl-CoA reductase gene cluster in the respective enrichment culture, which is possibly involved in the anaerobic degradation of p-xylene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app