Add like
Add dislike
Add to saved papers

Bifunctional monomer magnetic imprinted nanomaterials for selective separation of tetracyclines directly from milk samples.

Novel magnetic molecularly imprinted nanomaterials (DA + BSA-MMIPs) were prepared adopting bovine serum albumin (BSA) and dopamine as bifunctional monomers for the first time. Besides the role of assistant functional monomer, BSA can exclude the proteins with like charges and promote low molecular weight tetracyclines to be adsorbed. Thus, the DA + BSA-MMIPs could fulfil the selective separation of tetracyclines directly from milk samples. The characteristics, polymerization conditions, and adsorption performances of the resultant nanomaterials were investigated in detail. In addition of uniform imprinting layers, stable crystalline phase, and good magnetism of the DA + BSA-MMIPs, they have rapid binding kinetic, high adsorption capacity, and favorable reusability. The imprinted nanomaterials were coupled with HPLC to selectively extract and determine trace tetracyclines from untreated milk samples. The recoveries of tetracyclines are in the range of 84.1-95.8% with relative standard deviations of less than 6.7%. The developed method is especially suitable for the selective enrichment and detection of target compounds directly from a complex sample with proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app