Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Switchable Single-Mode Perovskite Microlasers Modulated by Responsive Organic Microdisks.

Nano Letters 2018 Februrary 15
Miniaturized lasers with high spectra purity and switchable output are of crucial importance for various ultracompact photonic devices. However, it still remains a great challenge to simultaneously control the wavelength and mode purity of microscale lasers due to the insensitive response of traditional materials to external stimuli. In this work, we propose a strategy to realize switchable single-mode microlasers in perovskite microwires (MWs) coupled with responsive organic microdisk cavities. The perovskite MW therein serves as an excellent laser source to deliver multiple lasing modes, while the microdisk functions as a spectral filter to achieve single-mode outcoupling. Furthermore, on account of the sensitive responsiveness of organic materials, reversible wavelength-switching of single-mode laser can be realized through adjusting the resonant modes of the microdisk cavity filter. The results will provide guidance for the rational design of nanophotonic devices with novel performances based on the characteristic of organic materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app