Add like
Add dislike
Add to saved papers

RNA-Templated Concatenation of Triplet Nucleic-Acid Probe.

Template-directed synthesis offers several distinct benefits over conventional laboratory creation, including unsurpassed reaction rate and selectivity. Although it is central to many biological processes, such an approach has rarely been applied to the in situ synthesis and recognition of biomedically relevant target. Towards this goal, we report the development of a three-codon nucleic-acid probe containing a C-terminal thioester group and an N-terminal cysteine that is capable of undergoing template-directed oligomerization in the presence of an RNA target and self-deactivation in its absence. The work has implications for the development of millamolecular nucleic-acid probes for targeting RNA-repeated expansions associated with myotonic dystrophy type 1 and other related neuromuscular and neurodegenerative disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app