Add like
Add dislike
Add to saved papers

Blocking PI3K/AKT signaling inhibits bone sclerosis in subchondral bone and attenuates post-traumatic osteoarthritis.

PI3K/AKT signaling is essential in regulating pathophysiology of osteoarthritis (OA). However, its potential modulatory role in early OA progression has not been investigated yet. Here, a mouse destabilization OA model in the tibia was used to investigate roles of PI3K/AKT signaling in the early subchondral bone changes and OA pathological process. We revealed a significant increase in PI3K/AKT signaling activation which was associated with aberrant bone formation in tibial subchondral bone following destabilizing the medial meniscus (DMM), which was effectively prevented by treatment with PI3K/AKT signaling inhibitor LY294002. PI3K/AKT signaling inhibition attenuated articular cartilage degeneration. Serum and bone biochemical analyses revealed increased levels of MMP-13, which was found expressed mainly by osteoblastic cells in subchondral bone. However, this MMP-13 induction was attenuated by LY294002 treatment. Furthermore, PI3K/AKT signaling was found to enhance preosteoblast proliferation, differentiation, and expression of MMP-13 by activating NF-κB pathway. In conclusion, inhibition of PI3K/AKT/NF-κB axis was able to prevent aberrant bone formation and attenuate cartilage degeneration in OA mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app