JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

An Efficient Gas Chromatography-Mass Spectrometry Approach for the Simultaneous Analysis of Deoxynivalenol and Its Bacterial Metabolites 3-keto-DON and 3- epi-DON.

Deoxynivalenol (DON) is one of the major toxic secondary metabolites produced by Fusarium fungi in cereal grains. Among the many promising strategies of DON detoxification are the microbial and enzymatic ones, which transform DON to nontoxic DON metabolites. Thus, proper analytical methods are needed for those DON metabolites. In this study, a robust gas chromatography-mass spectrometry (GC-MS) procedure was developed and validated for the simultaneous analysis of DON and two of its bacterial metabolites, 3-keto-DON and 3- epi-DON. The procedure involves a straightforward vacuum drying and derivatization step before the subsequent GC-MS analysis. Following the optimized protocol, DON and these two metabolites were separated on a capillary column within 15 min. The linear ranges for the these compounds were 10 to 2,000 ng mL-1 with correlation coefficients >0.99. For DON, 3- epi-DON, and 3-keto-DON, the limits of detection were 0.8, 3.0, and 0.05 ng mL-1 , and the limits of quantification were 2.6, 10.0, and 1.0 ng mL-1 , respectively. For all three compounds, the obtained relative standard deviation was 1.2 to 5.5%, and the recovery rates were 89.5 to 103.6%. The developed method was further validated by analyzing DON metabolites resulting from the biotransformation of DON initiated by cell-free lysates of the bacterium Devosia mutans 17-2-E-8. The developed protocol was sensitive, precise, accurate, and robust for the determination of DON, 3- epi-DON, and 3-keto-DON in liquid media and potentially other complex matrices without interference from other compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app