Add like
Add dislike
Add to saved papers

Patterning Graphene Surfaces with Iron-Oxide-Embedded Mesoporous Polypyrrole and Derived N-Doped Carbon of Tunable Pore Size.

Small 2018 March
This study develops a novel strategy, based on block copolymer self-assembly in solution, for preparing two-dimensional (2D) graphene-based mesoporous nanohybrids with well-defined large pores of tunable sizes, by employing polystyrene-block-poly(ethylene oxide) (PS-b-PEO) spherical micelles as the pore-creating template. The resultant 2D nanohybrids possess a sandwich-like structure with Fe2 O3 nanoparticle-embedded mesoporous polypyrrole (PPy) monolayers grown on both sides of reduced graphene oxide (rGO) nanosheets (denoted as mPPy-Fe2 O3 @rGO). Serving as supercapacitor electrode materials, the 2D ternary nanohybrids exhibit controllable capacitive performance depending on the pore size, with high capacitance (up to 1006 F/g at 1 A/g), good rate performance (750 F/g at 20 A/g) and excellent cycling stability. Furthermore, the pyrolysis of mPPy-Fe2 O3 @rGO at 800 °C yields 2D sandwich-like mesoporous nitrogen-doped carbon/Fe3 O4 /rGO (mNC-Fe3 O4 @rGO). The mNC-Fe3 O4 @rGO nanohybrids with a mean pore size of 12 nm show excellent electrocatalytic activity as an oxygen reduction reaction (ORR) catalyst with a four-electron transfer nature, a high half-wave-potential of +0.84 V and a limiting current density of 5.7 mA/cm2 , which are well comparable with those of the best commercial Pt/C catalyst. This study takes advantage of block copolymer self-assembly for the synthesis of 2D multifunctional mesoporous nanohybrids, and helps to understand the control of their structures and electrochemical performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app