Add like
Add dislike
Add to saved papers

High-Q and highly reproducible microdisks and microlasers.

Nanoscale 2018 January 26
High quality (Q) factor microdisks are fundamental building blocks of on-chip integrated photonic circuits and biological sensors. The resonant modes in microdisks circulate near their boundaries, making their performances strongly dependent upon surface roughness. Surface-tension-induced microspheres and microtoroids are superior to other dielectric microdisks when comparing Q factors. However, most photonic materials such as silicon and negative photoresists are hard to be reflowed and thus the realizations of high-Q microdisks are strongly dependent on electron-beam lithography. Herein, we demonstrate a robust, cost-effective, and highly reproducible technique to fabricate ultrahigh-Q microdisks. By using silica microtoroids as masks, we have successfully replicated their ultrasmooth boundaries in a photoresist via anisotropic dry etching. The experimentally recorded Q factors of passive microdisks can be as large as 1.5 × 106 . Similarly, ultrahigh Q microdisk lasers have also been replicated in dye-doped polymeric films. The laser linewidth is only 8 pm, which is limited by the spectrometer and is much narrower than that in previous reports. Meanwhile, high-Q deformed microdisks have also been fabricated by controlling the shape of microtoroids, making the internal ray dynamics and external directional laser emissions controllable. Interestingly, this technique also applies to other materials. Silicon microdisks with Q > 106 have been experimentally demonstrated with a similar process. We believe this research will be important for the advances of high-Q micro-resonators and their applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app