Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ischemia-induced Neuronal Cell Death Is Mediated by Chemokine Receptor CX3CR1.

Scientific Reports 2018 January 12
The chemokine fractalkine (CX3CL1) and its receptor CX3CR1 play a fundamental role in the pathophysiology of stroke. Previous studies have focused on a paracrine interaction between neurons that produce fractalkine and microglia that express CX3CR1 receptors in the central nervous system. Recent findings have demonstrated the functional expression of CX3CR1 receptors by hippocampal neurons, suggesting their involvement in neuroprotective and neurodegenerative actions. To elucidate the roles of neuronal CX3CR1 in neurodegeneration induced by ischemic stroke, a mouse model of permanent middle cerebral artery occlusion (pMCAO) was employed. In the pMCAO mice, increased CX3CR1 levels, apoptosis-associated morphological changes, and Caspase 3-positive neuronal cells were observed in the striatum and in the hippocampus 24 hours after occlusion. Upregulation of CX3CR1 in ischemic neurons is associated with neuronal apoptotic cell death. In contrast, ischemia-induced apoptotic neuronal cell death was decreased in CX3CR1 deficient mice. Cultured primary hippocampal neurons obtained from CX3CR1 deficient mice were more resistant to glutamate-induced excitotoxicity by blocking calcium influx than those from wild-type mice. For the first time, we reported that neuronal CXCR1 mediates neuronal apoptotic cell death in ischemia. Our results suggest that modulating CXCR1 activity offers a novel therapeutic strategy for stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app