Add like
Add dislike
Add to saved papers

Enhanced Methodologies for Detecting Phenotypic Resistance in Mycobacteria.

Lipid droplets found in algae and other microscopic organisms have become of interest to many researchers partially because they carry the capacity to produce bio-oil for the mass market. They are of importance in biology and clinical practice because their presence can be a phenotypic marker of an altered metabolism, including reversible resistance to antibiotics, prompting intense research.A useful stain for detecting lipid bodies in the lab is Nile red. It is a dye that exhibits solvatochromism; its absorption band varies in spectral position, shape and intensity with the nature of its solvent environment, it will fluoresce intensely red in polar environment and blue shift with the changing polarity of its solvent. This makes it ideal for the detection of lipid bodies within Mycobacterium spp. This is because mycobacterial lipid bodies' primary constituents are nonpolar lipids such as triacylglycerols but bacterial cell membranes are primarily polar lipid species. In this chapter we describe an optimal method for using Nile red to distinguish lipid containing (Lipid rich or LR cells) from those without lipid bodies (Lipid Poor or LP). As part of the process we have optimized a method for separating LP and LR cells that does not require the use of an ultracentrifuge or complex separation media. We believe that these methods will facilitate further research in these enigmatic, transient and important cell states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app