Add like
Add dislike
Add to saved papers

Computational exploration of Fe55@C240-catalyzed Fischer-Tropsch synthesis.

Single-shell carbon-encapsulated iron nanoparticles (SCEINs), Fe@C, have been shown to be charge-transfer complexes that can act as effective catalysts in the hydrogen and oxygen evolution reactions. A new generation of Fe-based catalysts for Fischer-Tropsch synthesis (FTS) which resembles SCEINs, e.g. single carbide nanoparticles encapsulated in carbon shells, has demonstrated enhanced activity and stability for FTS as compared to other carbon-supported Fe-based FTS. Thus the catalytic ability of SCEINs for the water splitting reactions and the Fe-based FTS catalyst with SCEINs-like features stimulated our exploration of SCEINs-catalyzed FTS. We performed ab initio DFT calculations using a realistic SCEINs model system Fe55@C240 to investigate for the first time the adsorption of the main reactants in FTS (CO and H/H2) and further to evaluate the catalytic ability of Fe55@C240 by reproducing the key steps of the well-known Fe-based FTS mechanisms (carbide, enol and CO insertion). Our calculations revealed: (i) a determinant role of Fe in enhancing CO adsorption (ii) strong cooperative effects with the adsorbates that stabilize the binding (iii) a less favourable two-sites reaction on Fe55@C240 due to preferential positions of the reactants farther to each other which prevent enol and carbide FTS mechanisms. We propose therefore a possible CO insertion path for hydrocarbon growth on Fe55@C240.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app