Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Quantification of silver nanoparticle toxicity to algae in soil via photosynthetic and flow-cytometric analyses.

Scientific Reports 2018 January 11
Soil algae, which have received attention for their use in a novel bioassay to evaluate soil toxicity, expand the range of terrestrial test species. However, there is no information regarding the toxicity of nanomaterials to soil algae. Thus, we evaluated the effects of silver nanoparticles (0-50 mg AgNPs/kg dry weight soil) on the soil alga Chlamydomonas reinhardtii after six days, and assessed changes in biomass, photosynthetic activity, cellular morphology, membrane permeability, esterase activity, and oxidative stress. The parameters measured were markedly affected by AgNP-induced stress at 50 mg AgNPs/kg dry weight soil, where soil algal biomass, three measures of photosynthetic activity (area, reaction center per absorption flux, and reaction center per trapped energy flux), and esterase activity decreased. AgNPs also induced increases in both cell size and membrane permeability at 50 mg AgNPs/kg dry weight soil. In addition to the increase in cell size observed via microscopy, a mucilaginous sheath formed as a protective barrier against AgNPs. Thus, the toxicity of AgNPs can be effectively quantified based on the physiological, biochemical, and morphological responses of soil algae, where quantifying the level of toxicity of AgNPs to soil algae could prove to be a useful method in terrestrial ecotoxicology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app