Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Extracellular Total Electrolyte Concentration Imaging for Electrical Brain Stimulation (EBS).

Scientific Reports 2018 January 11
Techniques for electrical brain stimulation (EBS), in which weak electrical stimulation is applied to the brain, have been extensively studied in various therapeutic brain functional applications. The extracellular fluid in the brain is a complex electrolyte that is composed of different types of ions, such as sodium (Na+ ), potassium (K+ ), and calcium (Ca+ ). Abnormal levels of electrolytes can cause a variety of pathological disorders. In this paper, we present a novel technique to visualize the total electrolyte concentration in the extracellular compartment of biological tissues. The electrical conductivity of biological tissues can be expressed as a product of the concentration and the mobility of the ions. Magnetic resonance electrical impedance tomography (MREIT) investigates the electrical properties in a region of interest (ROI) at low frequencies (below 1 kHz) by injecting currents into the brain region. Combining with diffusion tensor MRI (DT-MRI), we analyze the relation between the concentration of ions and the electrical properties extracted from the magnetic flux density measurements using the MREIT technique. By measuring the magnetic flux density induced by EBS, we propose a fast non-iterative technique to visualize the total extracellular electrolyte concentration (EEC), which is a fundamental component of the conductivity. The proposed technique directly recovers the total EEC distribution associated with the water transport mobility tensor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app