JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Decrypting the Heat Activation Mechanism of TRPV1 Channel by Molecular Dynamics Simulation.

Biophysical Journal 2018 January 10
As a prototype cellular sensor, the TRPV1 cation channel undergoes a closed-to-open gating transition in response to various physical and chemical stimuli including noxious heat. Despite recent progress, the molecular mechanism of heat activation of TRPV1 gating remains enigmatic. Toward decrypting the structural basis of TRPV1 heat activation, we performed extensive molecular dynamics simulations (with cumulative simulation time of ∼11 μs) for the wild-type channel and a constitutively active double mutant at different temperatures (30, 60, and 72°C), starting from a high-resolution closed-channel structure of TRPV1 solved by cryo-electron microscopy. In the wild-type simulations, we observed heat-activated conformational changes (e.g., expansion or contraction) in various key domains of TRPV1 (e.g., the S2-S3 and S4-S5 linkers) to prime the channel for gating. These conformational changes involve a number of dynamic hydrogen-bond interactions that were validated with previous mutational studies. Next, our mutant simulations observed channel opening after a series of conformational changes that propagate from the channel periphery to the channel pore via key intermediate domains (including the S2-S3 and S4-S5 linkers). The gating transition is accompanied by a large increase in the protein-water electrostatic interaction energy, which supports the contribution of desolvation of polar/charged residues to the temperature-sensitive TRPV1 gating. Taken together, our molecular dynamics simulations and analyses offered, to our knowledge, new structural, dynamic, and energetic information to guide future mutagenesis and functional studies of the TRPV1 channels and development of TRPV1-targeting drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app