Add like
Add dislike
Add to saved papers

Coevolutionary Landscape of Kinase Family Proteins: Sequence Probabilities and Functional Motifs.

Biophysical Journal 2018 January 10
The protein kinase catalytic domain is one of the most abundant domains across all branches of life. Although kinases share a common core function of phosphoryl-transfer, they also have wide functional diversity and play varied roles in cell signaling networks, and for this reason are implicated in a number of human diseases. This functional diversity is primarily achieved through sequence variation, and uncovering the sequence-function relationships for the kinase family is a major challenge. In this study we use a statistical inference technique inspired by statistical physics, which builds a coevolutionary "Potts" Hamiltonian model of sequence variation in a protein family. We show how this model has sufficient power to predict the probability of specific subsequences in the highly diverged kinase family, which we verify by comparing the model's predictions with experimental observations in the Uniprot database. We show that the pairwise (residue-residue) interaction terms of the statistical model are necessary and sufficient to capture higher-than-pairwise mutation patterns of natural kinase sequences. We observe that previously identified functional sets of residues have much stronger correlated interaction scores than are typical.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app