Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Brain structural changes in cynomolgus monkeys administered with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: A longitudinal voxel-based morphometry and diffusion tensor imaging study.

In animal models of Parkinson's disease (PD), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is one of the most widely used agents that damages the nigrostriatal dopaminergic pathway. However, brain structural changes in response to MPTP remain unclear. This study aimed to investigate in vivo longitudinal changes in gray matter (GM) volume and white matter (WM) microstructure in primate models administered with MPTP. In six cynomolgus monkeys, high-resolution magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) scans were acquired 7 times over 32 weeks, and assessments of motor symptoms were conducted over 15 months, before and after the MPTP injection. Changes in GM volume and WM microstructure were estimated on a voxel-by-voxel basis. Mixed-effects regression models were used to examine the trajectories of these structural changes. GM volume initially increased after the MPTP injection and gradually decreased in the striatum, midbrain, and other dopaminergic areas. The cerebellar volume temporarily decreased and returned to its baseline level. The rate of midbrain volume increase was positively correlated with the increase rate of motor symptom severity (Spearman rho = 0.93, p = 0.008). Mean, axial, and radial diffusivity in the striatum and frontal areas demonstrated initial increases and subsequent decreases. The current multi-modal imaging study of MPTP-administered monkeys revealed widespread and dynamic structural changes not only in the nigrostriatal pathway but also in other cortical, subcortical, and cerebellar areas. Our findings may suggest the need to further investigate the roles of inflammatory reactions and glial activation as potential underlying mechanisms of these structural changes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app