Add like
Add dislike
Add to saved papers

Heavy Atom Secondary Kinetic Isotope Effect on H-Tunneling.

Although frequently employed, heavy atom kinetic isotope effects (KIE) have not been reported for quantum mechanical tunneling reactions. Here we examine the secondary KIE through 13 C-substitution of the carbene atom in methylhydroxycarbene (H3 C-C̈-OH) in its [1,2]H-tunneling shift reaction to acetaldehyde (H3 C-CHO). Our study employs matrix-isolation IR spectroscopy in various inert gases and quantum chemical computations. Depending on the choice of the matrix host gas, the KIE varies within a range of 1.0 in xenon to 1.4 in neon. A KIE of 1.1 was computed using the Wentzel-Kramers-Brillouin (WKB) CVT/SCT, and instanton approaches for the gas phase at the B3LYP/cc-pVTZ level of theory. Computations with explicit consideration of the noble gas environment indicate that the surrounding atoms influence the tunneling reaction barrier height and width. The tunneling half-lives computed with the WKB approach are in good agreement with the experimental results in the different noble gases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app