Add like
Add dislike
Add to saved papers

Effect of the supports on catalytic activity of Pd catalysts for liquid-phase hydrodechlorination/hydrogenation reaction.

Environmental Technology 2018 January 26
Carbon nanotubes (CNTs), activated carbon (AC), graphene, and aluminum oxide (Al2 O3 ) supported 5% Pd catalysts were prepared by the conventional impregnation method, and catalytic activity was tested in the hydrogenation of 4-chlorophenol (4-CP) and nitrobenzene (NB) under ambient conditions (313 K and atmospheric pressure). It was found that catalytic activity was greatly affected by the supports. Moreover, Pd/CNTs catalyst exhibited much higher catalytic activity than the other three supported Pd catalysts. The mechanism of this phenomenon was studied through catalyst characterization (ICP-MS, Brunauer-Emmett-Teller [BET], TEM, and SEM). It was found that the mean particle size of Pd nanoparticles for Pd/CNTs (4.3 nm) was smaller than that for Pd/AC (6.9 nm), Pd/Al2 O3 (5.0 nm), and Pd/graphene (5.2 nm). Moreover, the actual loading amounts of Pd and BET surface areas were not the main reasons for the different catalytic activity of the four supported Pd catalysts. Above all, the smaller Pd particles of Pd/CNTs enabled the Pd/CNTs catalyst to exhibit much higher catalytic activity for the hydrogenation reactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app