Add like
Add dislike
Add to saved papers

Age-dependent differences in DNA damage after in vitro CT exposure.

PURPOSE: Age dependent radiation sensitivity for DNA damage after in vitro blood exposure by computer tomography (CT) was investigated.

MATERIALS AND METHODS: Radiation biomarkers (dicentrics and gammaH2AX) in blood samples of newborns, children under five years and adults after sham exposure (0 mGy), low-dose (41 mGy) and high-dose (978 mGy) in vitro CT exposure were analyzed.

RESULTS: Significantly higher levels of dicentric induction were found for the single and combined newborns/children group compared to adults, by a factor of 1.48 (95% CI 1.30-1.68), after exposure to 978 mGy. Although a significant dose response for damage induction and dose-dependent repair was found, the gammaH2AX assay did not show an age-dependent increase in DNA damage in newborns/children compared to adults. This was the case for the gammaH2AX levels after repair time intervals of 30 minutes and 24 hours, after correcting for the underlying background damage. For the low dose of 41 mGy, the power of the dicentric assay was also not sufficient to detect an age-dependent effect in the sample size investigated.

CONCLUSION: A 1.5-fold increased level of dicentric aberrations is detected in newborns and children under five years after 1 Gy radiation exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app