Add like
Add dislike
Add to saved papers

Using auditory steady-state responses for measuring hearing protector occlusion effect.

Noise & Health 2017 November
INTRODUCTION: The currently available methods for measuring the occlusion effect (OE) of hearing protection devices (HPDs) have limitations. Objective microphonic measurements do not assess bone-conducted sounds directly transmitted to the cochlea. Psychophysical measurements at threshold are biased due to the low-frequency masking effects from test participants' physiological noise and the variability of measurements based on subjective responses. An auditory steady-state responses (ASSRs) procedure is used as a technique that might overcome these limitations.

PARTICIPANTS AND METHODS: Pure-tone stimuli (250 and 500 Hz), with amplitude modulated at 40 Hz, were presented to twelve adults with normal hearing through a bone vibrator at three levels in 10-dB steps. The following two conditions were assessed: the unoccluded ear canal and occluded ear canal. ASSR amplitude data as a function of the stimulation level were linearized using least-square regressions. The ASSR-based "physiological" OE was then calculated as the average difference between the two measurements.

RESULTS: A significant statistical difference was found between the average threshold-based psychophysical OE and the average ASSR-based OE.

CONCLUSION: This study successfully ascertained that it is possible to objectively measure the OE of HPD using ASSRs collected on the same participant both with and without protectors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app