Add like
Add dislike
Add to saved papers

A Simple Cell-Based Assay for the Detection of Surface Protein Shedding by Rhomboid Proteases.

Rhomboids are intramembrane serine proteases that cleave their substrates within or immediately adjacent to their transmembrane domains, a process known as regulated intramembrane proteolysis. In eukaryotes, two main types of rhomboid proteases can be distinguished based on their subcellular localization: mitochondrial rhomboids and secretase-type rhomboids that target the secretory pathway. The latter class can cleave and release the extracellular domain of all epidermal growth factor-like proteins in Drosophila and can liberate epidermal growth factor (EGF) in mammals, in a process known as ectodomain shedding. These released EGFs can then activate the EGF receptor (EGFR). EGFR signaling is crucial for mammalian development and is often deregulated in human cancer. Here we describe a cell-based protocol for detecting the ability of rhomboid proteases to release EGFR ligands into the medium. First, cells are transfected with the corresponding protease- and substrate-expressing vectors; second, cells condition the medium and accumulate shed protein. After this, protein lysates from cells and media are prepared and Western blotting is performed to detect the EGFR ligands that have been released into the medium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app