Add like
Add dislike
Add to saved papers

Long-term response to recombinant human growth hormone treatment: a new predictive mathematical method.

INTRODUCTION: Recombinant GH has been offered to GH-deficient (GHD) subjects for more than 30 years, in order to improve height and growth velocity in children and to enhance metabolic effects in adults.

AIM: The aim of our work is to describe the long-term effect of rhGH treatment in GHD pediatric patients, suggesting a growth prediction model.

MATERIAL AND METHODS: A homogeneous database is defined for diagnosis and treatment modalities, based on GHD patients afferent to Hospital Regina Margherita in Turin (Italy). In this study, 232 GHD patients are selected (204 idiopathic GHD and 28 organic GHD). Each measure is shown in terms of mean with relative standard deviations (SD) and 95% confidence interval (95% CI). To estimate the final height of each patient on the basis of few measures, a mathematical growth prediction model [based on Gompertzian function and a mixed method based on the radial basis functions (RBFs) and the particle swarm optimization (PSO) models] was performed.

RESULTS: The results seem to highlight the benefits of an early start of treatment, further confirming what is suggested by the literature. Generally, the RBF-PSO method shows a good reliability in the prediction of the final height. Indeed, RMSE is always lower than 4, i.e., in average the forecast will differ at most of 4 cm to the real value.

CONCLUSIONS: In conclusion, the large and accurate database of Italian GHD patients allowed us to assess the rhGH treatment efficacy and compare the results with those obtained in other Countries. Moreover, we proposed and validated a new mathematical model forecasting the expected final height after therapy which was validated on our cohort.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app