Add like
Add dislike
Add to saved papers

Decreased intracellular granule movement and glucagon secretion in pancreatic α cells attached to superior cervical ganglion neurites.

Autonomic neurons innervate pancreatic islets of Langerhans and participate in the maintenance of blood glucose concentrations by controlling hormone levels through attachment with islet cells. We previously found that stimulated superior cervical ganglia (SCG) could induce Ca2+ oscillation in α cells via neuropeptide substance P using an in vitro co-culture model. In this study, we studied the effect of SCG neurite adhesion on intracellular secretory granule movement and glucagon secretion in α cells stimulated by low glucose concentration. Spinning disk microscopic analysis revealed that the mean velocity of intracellular granules was significantly lower in α cells attached to SCG neurites than that in those without neurites under low (2 mM), middle (10 mM), and high (20 mM) glucose concentrations. Stimulation by a low (2 mM) glucose concentration significantly increased glucagon secretion in α cells lacking neurites but not in those bound to neurites. These results suggest that adhesion to SCG neurites decreases low glucose-induced glucagon secretion in pancreatic α cells by attenuating intracellular granule movement activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app