Add like
Add dislike
Add to saved papers

Synthesis and Liquid Crystalline Properties of Unsymmetrically Substituted Naphthalenediimides with a Polar Headgroup: Effect of Amide Hydrogen Bonding and Alkyl Chain Length.

ChemistryOpen 2018 January
A series of new unsymmetrically substituted naphthalenediimide (NDI) moieties NDI-1 to NDI-6 were synthesized. The structures of these compounds were confirmed by means of FT-IR, 1 H NMR, 13 C NMR, ESI-mass and HRMS spectroscopic measurements. UV/Vis and fluorescence spectroscopy were employed to investigate the photophysical properties of the prepared compounds in solution and in the solid state. Using the onset of UV/Vis absorption, the optical band gaps were calculated. Cyclic voltammetry measurements were performed to study the electrochemical behavior and to calculate the LUMO energy levels. The thermal properties of NDI derivatives were studied by differential scanning calorimetry. The mesomorphic birefringent behavior of the NDI derivatives was investigated with polarizing optical microscopy. Among all of the studied NDI derivatives, only NDI-1 , NDI-2 , and NDI-3 showed liquid crystalline texture, owing to the presence of an amide linkage for H-bonding along with aromatic moieties for π-π-stacking.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app