Add like
Add dislike
Add to saved papers

Novel Splicing Mutation in B3GAT3 Associated with Short Stature, GH Deficiency, Hypoglycaemia, Developmental Delay, and Multiple Congenital Anomalies.

B3GAT3 , encoding β -1,3-glucuronyltransferase 3, has an important role in proteoglycan biosynthesis. Homozygous B3GAT3 mutations have been associated with short stature, skeletal deformities, and congenital heart defects. We describe for the first time a novel heterozygous splice site mutation in B3GAT3 contributing to severe short stature, growth hormone (GH) deficiency, recurrent ketotic hypoglycaemia, facial dysmorphism, and congenital heart defects. A female infant, born at 34 weeks' gestation to nonconsanguineous Caucasian parents with a birth weight of 1.9 kg, was noted to have cloacal abnormality, ventricular septal defect, pulmonary stenosis, and congenital sensorineural deafness. At 4 years of age, she was diagnosed with GH deficiency due to her short stature (height < 2.5 SD). MRI of the pituitary gland revealed a small anterior pituitary. She has multiple dysmorphic features: anteverted nares, small upturned nose, hypertelorism, slight frontal bossing, short proximal bones, hypermobile joints, and downslanting palpebral fissures. Whole exome sequencing (WES) was performed on the genomic DNA from the patient and biological mother. A heterozygous mutation in B3GAT3 (c.888+262T>G) in the invariant "GT" splice donor site was identified. This variant is considered to be pathogenic as it decreases the splicing efficiency in the mRNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app