Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Precise phase demodulation of single carrier-frequency interferogram by pixel-level Lissajous figure and ellipse fitting.

Scientific Reports 2018 January 10
Phase demodulation from a single carrier-frequency fringe pattern is becoming increasingly important particularly in areas of optical metrology such as dynamic interferometry, deflectometry and profilometry. The Fourier transform (FT) method and the spatial-carrier phase-shifting technique (SCPS) are two popular and well-established approaches to demodulation. However FT has the drawback of significant edge errors because of the Gibbs effect, whilst detuning errors for the local phase shift occur when SCPS is applied. A novel demodulation method based on pixel-level Lissajous figure and ellipse fitting (PLEF) is presented in this paper. Local demodulation in the spatial domain makes PLEF more flexible than the FT method, without spectral leakage. Based on a more adaptable approach, account is taken of variations in illumination and phase distribution over a few neighboring pixels. The mathematic demodulation model is of interest and has been demonstrated via simulation. Theoretical phase extraction error is as low as 10-4 rad. Experiments further corroborate the effectiveness of the proposed method. In conclusion, various influencing factors, e.g. variations of background/modulation, phase amplitude, carrier frequency, additive noise that may affect the precision of PLEF are discussed in detail.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app