Add like
Add dislike
Add to saved papers

The sensory equipment of a spider - A morphological survey of different types of sensillum in both sexes of Argiope bruennichi (Araneae, Araneidae).

Spiders show a wide range of sensory capabilities as evidenced by behavioural observations. Accordingly, spiders possess diverse sensory structures like mechano-, hygro-, thermo- or chemoreceptive sensilla. As to chemoreceptive structures, only trichoid tip-pore sensilla were found so far that were tested for gustation. That spiders are also able to receive airborne signals is corroborated by numerous behavioural experiments but the responsible structures have not been determined yet. Here, we provide sensilla distribution maps of pedipalps and walking legs of both sexes of the wasp spider Argiope bruennichi whose biology and mating system is well explored. By means of scanning electron microscopy, we scrutinized whether there is in fact only one type of trichoid pore sensillum and if so, if there are deviations in the outer structure of the tip-pore sensilla depending on their position on the body. We also describe the external structure and distribution of slit sense organs, trichobothria and tarsal organs. Our study shows that all four sensillum types occur on pedipalps and walking legs of both sexes. As to chemosensory organs, only tip-pore sensilla were found, suggesting that this sensillum type is used for both gustation and olfaction. The highest numbers of tip-pore sensilla were observed on metatarsi and tarsi of the first two walking legs. Mechanosensitive slit sense organs occur as single slit sensilla in rows along all podomers or as lyriform organs next to the joints. The mechanosensitive trichobothria occur on the basal part of tibiae and metatarsi. Tarsal organs occur on the dorsal side of all tarsi and the male cymbium. The distribution maps of the sensilla are the starting point for further exploration of internal, morphological differences of the sensilla from different regions on the body. Cryptic anatomical differences might be linked to functional differences that can be explored in combination with electrophysiological analyses. Consequently, the maps will help to elucidate the sensory world of spiders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app